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GRDC Region: South-eastern corner of the Murray-Darling Basin 
 
Abstract 
The objective of this project is to implement a prototype physical-statistical model, 
developed in project 1.5.5, to proof-of-concept stage linking climate output variables, 
such as rainfall and temperature, via a physically-based process model for ENSO and 
empirical predictors. 
We have successfully implemented the approach, developing a Monte Carlo-based 
algorithm for processing streaming data. This yields an estimate of the form of the 
required predictive distribution, which is summarised using a so-called adaptive 
Metropolis algorithm, now often used for Bayesian statistics. This is very 
computationally demanding, but there is considerable scope through parallel 
processing to speed up the execution of the algorithm. The exciting feature of this 
approach is that we can integrate physical and empirical models to extract the best of 
both using this method. 
In our case study we found that monthly temperature is a regular periodic series, so 
we focused on monthly rainfall as a more difficult application. ENSO alone did not 
have very strong predictive ability, so we retained time-coincident empirical 
predictors as proxies for an additional system process describing regional pressure 
characteristics. These predictors are essentially mean sea level pressure and a range of 
geo-potential height variables. Further work to develop a process model capable of 
representing these variables, coupled with the ENSO model, is likely to be beneficial. 
 
Significant research highlights, breakthroughs and snapshots 
 

1. As far as we can see in the literature this is the first time that a fully integrated 
physical-empirical seasonal forecasting model has been developed. This puts 
in place a new set of techniques for expanding forecast lead times based on 
this prototype. 

2. Forecasts are probabilistic in nature, providing a risk-informed forecast 
product. 

3. Encouraging results have been found in a case study, and there are clear paths 
to improvement. 

4. The approach has been designed to be modular, so as system knowledge 
grows it may easily be incorporated. 

5. The technical aspects of the algorithm have been implemented to require 
minimal user intervention; being adaptive in nature it learns from the data. 

 
 
Statement of results, their interpretation, and practical significance against each 
objective 
 

Objective 1: Implement and assess a prototype physical-statistical model for 
forecasting rainfall and temperature using ENSO and other physical drivers. 
 

The results obtained are discussed below against each of the project’s three 
milestones. A detailed description is provided by Campbell and Palmer (2008). 
1. Complete assessment for non-streaming data. 



  

It was considered unlikely that simple multiple linear regression models would be 
effective in this type of modelling, so a more flexible approach using Generalized 
Additive Models (GAMs- Wood, 2006) was implemented. We found temperature to 
be a regular periodic series, so we focused our attention on monthly rainfall as a more 
difficult task. The key lag for ENSO variables was at 5 months; Nino3 (mid-Pacific 
sea surface temperature anomaly) had a particularly strong relationship with monthly 
rainfall along with interactions involving thermocline depth. 
2. Complete assessment for streaming data and document results. 

We first had to implement the model from project 1.5.5, which developed a number of 
implementation options. So far as we can see the method implementation in project 
3.2.7 (described briefly in the next section) has not been published elsewhere, and 
provides a direct means to integrate an empirical forecast model with a physically-
based process model. The evidence is that the forecast skill for ENSO alone is quite 
limited and perhaps stronger in ENSO years. 
3. Assess skill improvement from additional physical drivers. 

It seems clear that a physical process describing features of regional pressure 
characteristics is required. We used the pressure variables derived by Charles (2007), 
but could not find skill in lagged versions of these variables, only when time-
coincident. Thus a dynamical forecast capability is required, coupled with the ENSO 
process. We retained the time-coincident variables as a proxy for this physical 
process, which indicated good forecasts may be possible. In addition we have also 
informally investigated the use of an Indian Ocean Dipole process to assist forecast 
skill. Preliminary indications suggest this process may be influential in at least some 
years. 
 
Summary of methods and modifications (with reasons) 
 
Method and Algorithm: The implementation is summarised by equation (3) of 
Campbell and Palmer (2008), which is closely related to the one-step forecast 
equation used in data assimilation. The last term is the one-step forecast distribution 
for the system, which drives the seasonal forecast.  The integration with the empirical 
model in this prototype is achieved by the middle term, the empirical model linking 
predictors to the climate output. The empirical terms are held fixed at the current time 
step, and the forecast distribution for the system is used to provide a trajectory for the 
climate output. The first term is an observation model for the process variables. 
Campbell and Palmer (2008) go on to modify an established particle filter algorithm 
(Kitagawa and Sato, 2001 pp191) to calculate the forecast distribution. 

A path to improvement here is to add detail to the middle term, particularly the 
development of a 1-step prediction model for the empirical predictors. The Bayesian 
approach makes it quite straightforward to incorporate this additional detail. 
Empirical predictors could also be replaced by incorporating further physical 
variables as process understanding grows. 

Software: We have implemented the algorithm in the R statistical computing 
environment (http://cran.au.r-project.org/) to facilitate uptake. The software is 
designed to be modular to enable alternative process models or updates to be 
incorporated. 

http://cran.au.r-project.org/


  

Case Study: We collaborated with Dr Steven Charles who led SEACI projects 1.3.2 
and 1.3.4 and used the same station list being employed for statistical downscaling 
studies. We then sought the advice of the Bureau of Meteorology through Bertrand 
Timbal (SEACI Theme Leader) on the quality of the stations, which left the 3 stations 
listed in Table 1 below. 
In general the fits obtained for the non-streaming case were moderate-to-mediocre, 
and as a summary the values of the R2- adjusted statistic are shown in Table 2 below. 
Arguably the best fit was obtained for station 75012, where a priori we might have 
expected this for station 88060 as the most North-easterly station. For station 75012 
we see a strong main effect due to the North-South mean sea level pressure (MSLP- 
time coincident) gradient as an empirical predictor. There appears to be no skill in 
these variables however when lagged for forecasting purposes. The key system 
variables are a main effect due to Nino3 and interactions involving thermocline depth 
(east and west Pacific) and thermocline depth (west Pacific) and Nino3 respectively. 
All of these terms are highly significant at a lag of 5 months. The highly significant 
main effect due to Nino3 is common to all three models, but the significance of the 
interaction terms varies with location. We note that Indo-Pacific thermocline depth 
has been used to forecast streamflow in Australia by Ruiz et al. (2006, 2007). 
Table 1 Meteorological observing stations used in the case study 

Station 
Number 

 
Station Name 

Latitude 
(degrees) 

Longitude 
(degrees) 

Elevation 
(m) 

70028 Yass (Derringullen) -34.7419 148.8895     595 

75012 Wakool (Calimo) -35.4217 144.5983     84 

88060 Wallaby Creek Weir -37.4489    145.2144     520 

 
Table 2 Values of R2- adjusted from the empirical (non-streaming data) prediction models. 

 
Station 

R2- 
adjusted 

70028 0.217 

75012 0.405 

88060 0.348 

 
We have run the forecast model for each from April to October in each of the years 
1981 to 2006, and estimated the forecast and analysis distributions. The figures 
described below show the forecast mean (solid profile) and 95% credibility limits 
(dashed lines). The full set of figures is provided by Campbell and Palmer (2008). 
Overview of the Analysis Results: In almost all cases the analysis tracks the observed 
state variables very closely, although there are some cases of ‘drift’. Examples include 
1981 (Nino3) and 1984 (Nino3); we used published parameter estimates for the 
system model, and this drift problem could be improved by estimating the parameters 
specifically for the case study data.  
Overview of the Prediction Results: As it was clear that ENSO alone explains a 
relatively small part of the variation in the rainfall data we limit our summary to a 
description of the results obtained rather than detailed quantitative summaries. 
First, the results are very computationally intensive to obtain- the set shown here 
required 268 hours of CPU time. It is likely that the summaries retain a significant 



  

noise component due to Monte Carlo error, so the credibility intervals are indicative 
only. High confidence can be attached to the mean profiles found. There is 
considerable room for speed improvement to remedy this, and the results suggest that 
this would be worthwhile if a suitably predictive physical process model is found. Our 
exploratory work suggests that a process model incorporating mean sea level pressure 
fields and geo-potential height as state variables would be attractive. We have also 
undertaken preliminary work on the Indian Ocean Dipole series, and there are some 
promising indications, supported by the work of Ruiz et al. (2006, 2007). We break 
our discussion down by ENSO events in the case study period, using the years listed 
on the Bureau of Meteorology’s web site.  
El Niño Years 
1982: The rainfall patterns are followed quite closely, especially well for station 

75012 (). The analysis tracks the observed state variables very closely. 
1987: The mean profiles are quite accurate in all cases, especially for station 70028; 

the analysis tracks well with a little bit of drift within the credibility interval. 
1991: The forecasts are very good for station 88060 (Figure 2) and very effective for 

the other two stations, with the exception of June. The analysis tracks well, 
although there is a persistent bias present, especially for the Nino3 analysis. 

1993: The forecast mean profiles are accurate in response shape with a few 
exceptions, but are biased in the case of station 88060 in particular. The 
analysis drifts for Nino3 in particular. 

1994: The analysis tracks well; perhaps the most striking feature is spectacular over-
prediction for August to October at stations 70028 (Figure 3) and 88060. 

1997: Stations 75012 and 88060 are forecast quite well; the analysis tracks well. 
2002: Overall there is consistent over-prediction, especially for station 75012 

although the pattern of the mean profile is largely correct. The analysis tracks 
well. 

La Niña Years 
1988: Good reproductions are found for each profile, with a notable exception for 

June at station 75012 where a large over-prediction is made. The highest 
rainfall was observed at station 88060 and this was well forecast, including a 
sustained relatively high rainfall around this month. 

1998: The forecasts are accurate in all cases, except April at station 88060. The 
analysis tracks well. [] 

Non-ENSO years 
Performance here seems to be very similar, which could be driven by the time-
coincident pressure variables that were left in the model to be proxies for a pressure 
system process. There are examples of poor analyses (1981 and 1984) and biases 
(various). 
Years 2005 & 2006 
These years were not used for model-fitting. In both cases the analysis tracks well and 
the mean forecast profiles are quite accurate. 
 
Summary of links to other projects 
The links for this project are focused on downscaling activities within SEACI, 
principally projects 1.4.2 and 2.1.3. 
 
• The core methodology for this project was developed in project 1.5.5, and a 

technical report describing the work completed is about to be reviewed. 
• Project 1.3.3 (Atmospheric Predictor Selection for Statistical Downscaling)  



  

• Project 2.1.2 (Extraction and Assessment of Statistical Downscaling Predictors)  
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Figure 2 Forecast results for 1991, 
station 88060. 

Figure 1 Forecast results from 1994,  
station 70028. 

 
 
 
Publications arising from this project 
Technical report: Campbell and Palmer (2008) 
Manuscript in preparation: Campbell, E. P. and Palmer, M. J. (2008). Physical-
Statistical Seasonal Forecasting. To be submitted to Journal of Climate. This 
manuscript will be submitted for approval to the SEACI working group when it enters 
the internal review process. 

Acknowledgement: This project was funded by the South East Australian Climate 
Initiative. We are grateful to Steven Charles and Bertrand Timbal for their assistance. 

Recommendations for changes to work plan from your original table 
An amendment was notified in April 2007; no further changes were required. 
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Project Milestone Reporting Table 
 
Milestone 
description1 

(one line) 
(up to 33% of 
project activity) 

Performance 
indicators2 

(1- 3 dot points) 

Completion 
date3 
xx/xx/xxxx 

Budget4 
for 
Milestone 
($) 

Progress5 
(1- 3 dot points) 

Recommended 
changes to 
workplan6 
(1- 3 dot points) 

1. Complete 
assessment for 
non-streaming 
data. 

- Full database 
compiled. 
- Software 
assessed against 
full database. 
- Implement 
algorithm for 
non-streaming 
data. 
- Commence 
skill testing. 
- Identify 
additional non-
ENSO drivers. 
 

30/4/2007 - - Data base 
compiled 
- Delay to staff 
availability has 
prevented progress 
on subsequent 
activities 

- Move completion 
date of Milestone 1 
to 30/7/2007 
- Move completion 
date of Milestone 2 
to 30/9/2007 
- Milestone 3 is 
unaffected 

2. Complete 
assessment for 
streaming data 
and document 
results. 

- Implement 
algorithm for 
streaming data 
on full data base. 
- Complete skill 
testing. 
 
 

30/6/2007 25k Completed 
according to 
revised milestone. 

 

3. Assess skill 
improvement 
from additional 
physical drivers. 

- Include 
additional non-
ENSO drivers. 
- Assess skill 
improvement. 
- Final report 
complete by 
milestone date 

31/12/2007 25k Completed on time. 
Technical report to 
complement final 
project report is in 
review (draft 
supplied with final 
project report). 
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